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Abstract—Hardware acceleration has been 

proved an extremely promising 

implementation strategy for the digital 

signal processing (DSP) domain. Rather 

than adopting a monolithic application-

specific integrated circuit design approach, 

in this brief, we present a novel accelerator 

architecture comprising flexible 

computational units that support the 

execution of a large set of operation 

templates found in DSP kernels. We 

differentiate from previous works on flexible 

accelerators by enabling computations to be 

aggressively performed with carry-save (CS) 

formatted data. Advanced arithmetic design 

concepts, i.e., recoding techniques, are 

utilized enabling CS optimizations to be 

performed in a larger scope than in previous 

approaches. Extensive experimental 

evaluations show that the proposed 

accelerator architecture delivers average 

gains of up to 61.91% in area-delay product 

and 54.43% in energy consumption 

compared with the state-of-art flexible 

datapaths. Index Terms—Arithmetic 

optimizations, carry-save (CS) form, data 

path synthesis, flexible accelerator, 

operation chaining. 

I. INTRODUCTION 

Modern embedded systems target high-end 

application domains requiring efficient 

implementations of computationally 

intensive digital signal processing (DSP) 

functions. The incorporation of 

heterogeneity through specialized hardware 

accelerators improves performance and 

reduces energy consumption [1]. Although 

application-specific integrated circuits 

(ASICs) form the ideal acceleration solution 

in terms of performance and power, their 

inflexibility leads to increased silicon 

complexity, as multiple instantiated ASICs 

are needed to accelerate various kernels. 



 
 

   2 
                                                                        

 

Many researchers have proposed the use of 

domain-specific coarse-grained 

reconfigurable accelerators in order to 

increase ASICs’ flexibility without 

significantly compromising their 

performance. High-performance flexible 

datapaths have been proposed to efficiently 

map primitive or chained operations found 

in the initial data-flow graph (DFG) of a 

kernel. The templates of complex chained 

operations are either extracted directly from 

the kernel’s DFG or specified in a 

predefined behavioral template library. 

Design decisions on the accelerator’s 

datapath highly impact its efficiency. 

Existing works on coarse-grained 

reconfigurable datapaths mainly exploit 

architecture-level optimizations, e.g., 

increased instruction-level parallelism (ILP). 

The domain-specific architecture generation 

algorithms of] vary the type and number of 

computation units achieving a customized 

design structure. In flexible architectures 

were proposed exploiting ILP and operation 

chaining. Recently, Ansaloni et al. adopted 

aggressive operation chaining to enable the 

computation of entire subexpressions using 

multiple ALUs with heterogeneous 

arithmetic features.The aforementioned 

reconfigurable architectures exclude 

arithmetic optimizations during the 

architectural synthesis and consider them 

only at the internal circuit structure of 

primitive components, e.g., adders, during 

the logic synthesis However, research 

activities have shown that the arithmetic 

optimizations at higher abstraction levels 

than the structural circuit one significantly 

impact on the datapath performance. In 

timing-driven optimizations based on carry-

save (CS) arithmetic were performed at the 

post-Register Transfer Level (RTL) design 

stage. In common subexpression elimination 

in CS computations is used to optimize 

linear DSP circuits. Verma et al. developed 

transformation techniques on the 

application’s DFG to maximize the use of 

CS arithmetic prior the actual datapath 

synthesis. The aforementioned CS 

optimization approaches target inflexible 

datapath, i.e., ASIC, implementations. 

Recently, Xydis et al. proposed a flexible 

architecture combining the ILP and 

pipelining techniques with the CS-aware 

operation chaining. However, all the 

aforementioned solutions feature an inherent 

limitation, i.e., CS optimization is bounded 

to merging only additions/subtractions. A 

CS to binary conversion is inserted before 

each operation that differs from 
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addition/subtraction, e.g., multiplication, 

thus, allocating multiple CS to binary 

conversions that heavily degrades 

performance due to time-consuming carry 

propagations. In this brief, we propose a 

high-performance architectural scheme for 

the synthesis of flexible hardware DSP 

accelerators by combining optimization 

techniques from both the architecture and 

arithmetic levels of abstraction. We 

introduce a flexible datapath architecture 

that exploits CS optimized templates of 

chained operations. The proposed 

architecture comprises flexible 

computational units (FCUs), which enable 

the execution of a large set of operation 

templates found in DSP kernels. The 

proposed accelerator architecture delivers 

average gains of up to 61.91% in area-delay 

product and 54.43% in energy consumption 

compared to state-of-art flexible datapaths 

sustaining efficiency toward scaled 

technologies. 

II.CARRY-SAVE 

ARITHMETIC:MOTIVATIONAL 

OBSERVATIONS AND LIMITATIONS  

CS representation  has been widely used to 

design fast arithmetic circuits due to its 

inherent advantage of eliminating the large 

carry-propagation chains. CS arithmetic 

optimizations rearrange the application’s 

DFG and reveal multiple input additive 

operations (i.e., chained additions in the 

initial DFG), which can be mapped onto CS 

compressors. The goal is to maximize the 

range that a CS computation is performed 

within the DFG. However, whenever a 

multiplication node is interleaved in the 

DFG, either a CS to binary conversion is 

invoked or the DFG is transformed using the 

distributive property Thus, the 

aforementioned CS optimization approaches 

have limited impact on DFGs dominated by 

multiplications, e.g., filtering DSP 

applications. In this brief, we tackle the 

aforementioned limitation by exploiting the 

CS to modified Booth (MB) recoding each 

time a multiplication needs to be performed 

within a CS-optimized datapath. Thus, the 

1063-8210 © 2015 IEEE. Personal use is 

permitted, but republication/redistribution 

requires IEEE permission. See 

http://www.ieee.org/publications_standards/

publications/rights/index.html for more 

information. 
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Fig. 1. Abstract form of the flexible 

datapath. 

 

Fig. 2. FCU. 

computations throughout the multiplications 

are processed using CS arithmetic and the 

operations in the targeted datapath are 

carried out without using any intermediate 

carry-propagate adder for CS tobinary 

conversion, thus improving performance. 

III.PROPOSEDFLEXIBLE 

ACCELERATOR 

 The proposed flexible accelerator 

architecture is shown in Fig. 1. Each FCU 

operates directly on CS operands and 

produces data in the same form 1 for direct 

reuse of intermediate results. Each FCU 

operates on 16-bit operands. Such a bit-

length is adequate for the most DSP 

datapaths [16], but the architectural concept 

of the FCU can be straightforwardly adapted 

for smaller or larger bit-lengths. The number 

of FCUs is determined at design time based 

on the ILP and area constraints imposed by 

the designer. The CStoBin module is a 

ripple-carry adder and converts the CS form 

to the two’s complement one. The register 

bank consists of scratch registers and is used 

for storing intermediate results and sharing 

operands among the FCUs. Different DSP 

kernels (i.e., different register allocation and 

data communication patterns per kernel) can 

be mapped onto the proposed architecture 

using post-RTL datapath interconnection 

sharing techniques [9], [17], [18]. The 

control unit drives the overall architecture 

(i.e., communication between the data port 

and the register bank, configuration words of 

the FCUs and selection signals for the 

multiplexers) in each clock cycle. 

A. Structure of the Proposed Flexible 

Computational Unit The structure of the 

FCU (Fig. 2) has been designed to enable 

high-performance flexible operation 

chaining based on a library of operation 
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templates [4], [7]. Each FCU can be 

configured to any of the T1–T5 operation 

templates shown in Fig. 3. The proposed 

FCU enables intratemplate operation 

chaining by fusing the additions 

1The FCU is able to operate on either CS or 

two’s complement formatted operands, since 

a CS operand comprises two 2’s 

complement binary numbers. 

 

Fig. 3. FCU template library 

performed before/after the 

multiplication and performs any partial 

operation template of the following complex 

operations: W∗ = A×(X∗+Y∗)+K∗ (1) W∗ = 

A×K∗+(X∗+Y∗). (2) The following relation 

holds for all CS data: X∗ ={XC, XS}=X C + 

XS. The operand A is a two’s complement 

number. The alternative execution paths in 

each FCU are specified after properly setting 

the control signals of the multiplexers 

MUX1 and MUX2 (Fig. 2). The multiplexer 

MUX0 outputs Y∗ when CL0 = 0 (i.e., X∗ + 

Y∗ is carried out) or Y∗ when X∗ − Y∗ is 

required and CL0 = 1. The two’s 

complement 4:2 CS adder produces the N∗ 

= X∗+Y∗ when the input carry equals 0 or 

the N∗ = X∗−Y∗ when the input carry 

equals 1. The MUX1 determines if N∗ (1) or 

K∗ (2) is multiplied with A. The MUX 2 

specifies if K∗ (1) or N∗ (2) is added with 

the multiplication product. The multiplexer 

MUX3 accepts the output of MUX2 and its 

1’s complement and outputs the former one 

when an addition with the multiplication 

product is required (i.e., CL3 =0) or the later 

one when a subtraction is carried out (i.e., 

CL3 =1). The 1-bit ace for the subtraction is 

added in the CS adder tree. The multiplier 

comprises a CS-to-MB module, which 

adopts a recently proposed technique [19] to 

recode the 17-bit P∗ in its respective MB 

digits withminimal carrypropagation. The 

multiplier’s product consists of 17 bits. The 

multiplier includes a compensation method 

for reducing the error imposed at the 

product’s accuracy by the truncation 

technique [20]. However, since all the FCU 

inputs consist of 16 bits and provided that 

there are no overflows, the 16 most 

significant bits of the 17-bit W∗ (i.e., the 

output of the Carry-Save Adder (CSA) tree, 

and thus, of the FCU) are inserted in the 

appropriate FCU when requested. 
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B. DFG Mapping Onto the Proposed FCU-

Based Architecture In order to efficiently 

map DSP kernels onto the proposed FCU-

based accelerator, the semiautomatic 

synthesis methodology presented in [7] has 

been adapted. At first, a CS-aware 

transformation is performed onto the 

original DFG, merging nodes of multiple 

chained additions/subtractions to 4:2 

compressors. A pattern generation on the 

transformed DFG clusters the CS nodes with 

the multiplication operations to form FCU 

template operations (Fig. 3). The designer 

selects the FCU operations covering the 

DFG for minimized latency. Given that the 

number of FCUs is fixed, a resource-

constrained scheduling is considered with 

the available FCUs and CStoBin modules 

determining the resource constraint set. The 

clustered DFG is scheduled, so that each 

FCU operation is assigned to a specific 

control step. A list-based scheduler [21] has 

been adopted considering the mobility2 of 

FCU operations. The FCU operations are 

scheduled according to descending mobility. 

The scheduled FCU operations are bound 

onto FCU instances and proper 

configuration bits are generated. After 

completing register allocation, a FSM is 

generated in order to implement the control 

unit of the overall architecture. 

2Mobility: The ALAP-ASAP difference of 

the FCU operations. 

This article has been accepted for inclusion 

in a future issue of this journal. Content is 

final as presented, with the exception of 

pagination. 

Fig. 4. Typical chaining of addition–

multiplication–addition operations reflecting 

T1 template of Fig. 3. Its design is based on 

(a) two’s complement arithmetic, (b) CS 

optimizations of [12], (c) CS optimizations 

with multiplication distribution [14], and (d) 

incorporating the CS-to-MB recoding 

concept. (e) Positioning of the proposed 

approach with respect to the two’s 

complement one and the CS optimizations 

based on  

 

IV. THEORETICALANALYSIS  

In this section, we provide a theoretical 

analysis of the proposed approach based on 
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the unit gate model3 .The critical template 

of the proposed FCU is the T1 of Fig. 3 and 

reflects an addition–multiplication–

additionoperationchaining(AMADFG). Fig. 

4(a) shows the AMADFG when all operands 

are in two’s complement form. Fig. 4(b) 

shows how [12] optimizes the AMADFG. 

Fig. 4(c) illustrates how [14] distributes the 

multiplication operation over the CS 

formatted data. The proposed approach in 

Fig. 4(d) incorporates the CS-to-MB 

recoding unit. We assume 16-bit input 

operands for all the designs and, without 

loss of generality, we do not consider any 

truncation concept during the 

multiplications. Fig. 4(e) shows the area-

delay tradeoffs of all the alternative designs. 

As shown, the proposed design solution is 

the most effective among all the design 

alternatives. 

V. EXPERIMENTALEVALUATION  

A. Circuit-Level Exploration of the 

Proposed FCU With Respect to Technology 

Scaling A circuit-level comparative study 

was conducted among the proposed FCU, 

the flexible computational component (FCC) 

of] and the reconfigurable arithmetic unit 

(RAU)4 of [7] in scaled technology nodes. 

The CS representation requires twice the 

number of bits of the respective two’s 

complement form, thus, increasing wiring 

and affecting performance in scaled 

technologies. This experimentation targets 

to show that the scaling impact on the 

performance does not eliminate the benefits 

of using CS arithmetic. The three units 

considered were described in RTL using 

Verilog. The CSA tree of the proposed FCU 

and the adders and multipliers of the FCC 

were imported from the Synopsys 

DesignWare library [11]. We used Synopsys 

Design Compiler [11] to synthesize the 

examined units and the TSMC 130, 90, and 

65 nm standard cell libraries.5 We 

synthesized each unit with the highest 

optimization degree at its critical clock 

period and 20 higher ones witha step 

interval of 0.10 ns. Fig. 5 reports the area 

complexity of the evaluated units at 130, 90, 

and 65 nm of synthesis technology. At 130 

nm, the proposed FCU,3The two-input gates 

NAND, AND, NOR,andORcount as one 

gate equivalent for area (Ag) and delay (Tg). 

The two-input XOR, XNOR gates count as 

two Ag and two Tg. The Full Adder (FA) 

and Half Adder (HA) area is seven and three 

Ag, respectively, while their critical delays 

are four and two Tg. 4In this section, we 

consider one flexible pipeline stage (FPS) of 
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the RAU. 5The factor of technology scaling 

is ∼0.7 as the technology shrinks from 130 

to 90 nm and from 90 to 65 nm. 

. 

the FCC, and the RAU operate without 

timing violations starting at 2.98, 4.83, and 

1.99 ns, respectively. At 90 nm, the 

proposed FCU, the FCC, and the RAU are 

timing functional starting at 1.66, 2.46, and 

1.01 ns, respectively. In addition, at 65 nm, 

the proposed FCU, the FCC, and the RAU 

start operating without timing violations at 

1.13, 1.68, and 0.67 ns, respectively. As the 

synthesis technology is scaled down, Fig. 5 

shows that the proposed FCU outperforms 

the FCC in terms of critical delay and area 

complexity, but presents larger values for 

these metrics than the RAU in all the 

technology nodes. However, RAU’s flexible 

pipeline stage (FPS) [7] features limited 

ability in carrying out heavy arithmetic 

operations as shown from the mega 

operations per second/watt (MOPS/W)6 

evaluation in Fig. 6. Fig. 6 shows the 

MOPS/W values for the proposed FCU, the 

FCC, and the RAU at their critical clock 

periods with respect to the synthesis 

technology. For each unit, we consider the 

templates 

6Mega Operations per Second/Watt: MOPS 

is defined as the number of operations 

multiplied by the clock frequency divided by 

the operation latency (=number of cycles), 

i.e., MOPS =((#Ops)/(#Cycles))×ClkFreq. 

with the largest number of active operations 

without overlapping the one another and 

calculate the average ((#Ops)/(#Cycles)) 

factor. The #Ops derives from the two’s 

complement arithmetic operations (additive 

or multiplicative). For CS-aware units, i.e., 

FCU and RAU, the CStoBin module runs in 

parallel with the FCU or RAU, thus 

counting as one additive operation. In 

particular, for the proposed FCU, we 

consider the templates T1 (or T2) with six 

operations (e.g., five operations from T1 and 

one operation from CStoBin) in one cycle 
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and T3 with five operations in one cycle. 

Thus, ((#Ops)/(#Cycles))FCU = 11/2. For 

the FCC, we consider only the full load case 

of four operations in one cycle resulting in 

((#Ops)/(#Cycles))FCC = 4. In addition, for 

the RAU, we consider the template of five 

additive operations that are carried out in 

one cycle, and the template of one 

multiplication that needs four cycles. Thus, 

((#Ops)/(#Cycles))RAU =21/8. The clock 

frequency ClkFreq is the highest one that 

each unit achieves (i.e., the critical clock 

period). The power values for computing the 

MOPS/W ones have been extracted by 

simulating each unit with Modelsim [23] for 

216 random inputs and using the Synopsys 

PrimeTime-PX [11] with the average 

calculation mode triggered. As shown, the 

proposed FCU delivers average MOPS/W 

gains across technology nodes of 6× and 2× 

over FCC and RAU, respectively. Thus, as 

the synthesis technology is scaled down, the 

benefits of the proposed FCU remain. 

B. Mapping of DSP Kernels Onto the 

Proposed FCU-Based Architecture We 

examined the efficiency of the proposed 

solution by mapping and accelerating DSP 

kernels onto the FCU datapath, that is: 1) a 

sixth-order ELLIPTIC filter [24]; 2) a 16-

taps Finite Impulse Response filter (FIR16); 

3) a nonlinear IIR VOLTERRA filter; 4) an 

1-D unrolled Discrete Cosine Transform 

(DCT) kernel (UDCT); 5) the 2-D JPEG 

DCT (JPEGDCT) [25]; and 6) the 2-D 

Inverse MPEG DCT (MPEG_IDCT) [25]. 

The kernels were scheduled and mapped 

onto the architectures based on the proposed 

FCU, the FCC [4], and the RAU [7]. The 

proposed architecture comprises four FCUs 

and one CStoBin module, the FCC-based 

one contains two FCCs (=8 ALUs+8 

Multipliers) [4], and the RAU-based 

architecture consists of four FPSs and one 

CStoBin module [7]. For each kernel 

mapped, the maximum memory bandwidth 

has been allocated between the local storage 

and the processing elements. All the 

datapaths were synthesized at 65 nm. The 

clock periods were specified at 1.60, 2.20, 

and 1.20 ns for the proposed FCU-, the 

FCC-, and the RAU-based architectures, 

respectively, considering the critical delays 

of Section V-A plus a slack of 0.50 ns for 

absorbing any delays inserted by the 

multiplexers and control units. Energy 

consumption values were calculated through 

PrimeTime-PX after simulating each 

datapath with Modelsim. reports the 

execution latency, area complexity, and 
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energy values of the DSP kernels mapped 

onto the examined architectures. The 

execution latency is the total number of 

cycles multiplied by the clock period for the 

synthesis of each architecture. The average 

latency gains of the proposed FCU-based 

architecture over the ones built on the FCC 

and the RAU are 33.36% and 56.69%, 

respectively. Regarding the area complexity, 

the proposed FCU-based flexible datapath 

delivers average gains of 31.75% and 

13.23% over the FCC- and RAU-based 

solutions, respectively. As shown, different 

kernels demand different area resources due 

to the differing needs regarding the number 

of scratch registers and multiplexers, as well 

as the complexity of the control unit (i.e., 

the more cycles a mapped kernel needs for 

execution, the more complex the control 

unit). Table I also reports the metrics of the 

area-delay product and the energy providing 

a clear view of the beneficial characteristics 

of the proposed approach and allowing us to 

safely conclude that the proposed 

architecture forms a very efficient solution 

for DSP acceleration. Table II shows the 

theoretically estimated values for the 

execution latency and area complexity of the 

DSP kernels mapped onto the examined 

architectures. The analysis is based on the 

unit gate model as in Section IV. Regarding 

both the execution latency and the area 

complexity and considering all the DSP 

kernels, the proposed FCU-based 

architecture outperforms the ones built on 

the FCC and the RAU. As expected, the 

timing constraints and the effects of cell 

sizing implied by the Design Compiler 

synthesis tool, in some cases result in 

inconsistencies between the experimental 

and the theoretical studies, e.g., in Table I, 

the latency of ELLIPTIC kernel on FCC is 

more efficient than the one on RAU, but in 

Table II, the RAU-based ELLIPTIC kernel 

outperforms the one based on the FCC. In 

any case, both the experimental and 

theoretical analysis indicated that the 

proposed approach forms the most efficient 

architectural solution. 

VI. CONCLUSION 

 In this brief, we introduced a flexible 

accelerator architecture that exploits the 

incorporation of CS arithmetic optimizations 

to enable fast chaining of additive and 

multiplicative operations. The proposed 

flexible accelerator architecture is able to 

operate on both conventional two’s 

complement and CS-formatted data 

operands, thus enabling high degrees of 
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computational density to be achieved. 

Theoretical and experimental analyses have 

shown that the proposed solution forms an 

efficient design tradeoff point delivering 

optimized latency/area and energy 

implementations.  
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