
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

Flexible DSP Accelerator Architecture Exploiting Carry-Save

Arithmetic

Ms Y.Sreelatha Miss.L.PRABHAVATHI

Abstract—Hardware acceleration has been

proved an extremely promising

implementation strategy for the digital

signal processing (DSP) domain. Rather

than adopting a monolithic application-

specific integrated circuit design approach,

in this brief, we present a novel accelerator

architecture comprising flexible

computational units that support the

execution of a large set of operation

templates found in DSP kernels. We

differentiate from previous works on flexible

accelerators by enabling computations to be

aggressively performed with carry-save (CS)

formatted data. Advanced arithmetic design

concepts, i.e., recoding techniques, are

utilized enabling CS optimizations to be

performed in a larger scope than in previous

approaches. Extensive experimental

evaluations show that the proposed

accelerator architecture delivers average

gains of up to 61.91% in area-delay product

and 54.43% in energy consumption

compared with the state-of-art flexible

datapaths. Index Terms—Arithmetic

optimizations, carry-save (CS) form, data

path synthesis, flexible accelerator,

operation chaining.

I. INTRODUCTION

Modern embedded systems target high-end

application domains requiring efficient

implementations of computationally

intensive digital signal processing (DSP)

functions. The incorporation of

heterogeneity through specialized hardware

accelerators improves performance and

reduces energy consumption [1]. Although

application-specific integrated circuits

(ASICs) form the ideal acceleration solution

in terms of performance and power, their

inflexibility leads to increased silicon

complexity, as multiple instantiated ASICs

are needed to accelerate various kernels.

 2

Many researchers have proposed the use of

domain-specific coarse-grained

reconfigurable accelerators in order to

increase ASICs’ flexibility without

significantly compromising their

performance. High-performance flexible

datapaths have been proposed to efficiently

map primitive or chained operations found

in the initial data-flow graph (DFG) of a

kernel. The templates of complex chained

operations are either extracted directly from

the kernel’s DFG or specified in a

predefined behavioral template library.

Design decisions on the accelerator’s

datapath highly impact its efficiency.

Existing works on coarse-grained

reconfigurable datapaths mainly exploit

architecture-level optimizations, e.g.,

increased instruction-level parallelism (ILP).

The domain-specific architecture generation

algorithms of] vary the type and number of

computation units achieving a customized

design structure. In flexible architectures

were proposed exploiting ILP and operation

chaining. Recently, Ansaloni et al. adopted

aggressive operation chaining to enable the

computation of entire subexpressions using

multiple ALUs with heterogeneous

arithmetic features.The aforementioned

reconfigurable architectures exclude

arithmetic optimizations during the

architectural synthesis and consider them

only at the internal circuit structure of

primitive components, e.g., adders, during

the logic synthesis However, research

activities have shown that the arithmetic

optimizations at higher abstraction levels

than the structural circuit one significantly

impact on the datapath performance. In

timing-driven optimizations based on carry-

save (CS) arithmetic were performed at the

post-Register Transfer Level (RTL) design

stage. In common subexpression elimination

in CS computations is used to optimize

linear DSP circuits. Verma et al. developed

transformation techniques on the

application’s DFG to maximize the use of

CS arithmetic prior the actual datapath

synthesis. The aforementioned CS

optimization approaches target inflexible

datapath, i.e., ASIC, implementations.

Recently, Xydis et al. proposed a flexible

architecture combining the ILP and

pipelining techniques with the CS-aware

operation chaining. However, all the

aforementioned solutions feature an inherent

limitation, i.e., CS optimization is bounded

to merging only additions/subtractions. A

CS to binary conversion is inserted before

each operation that differs from

 3

addition/subtraction, e.g., multiplication,

thus, allocating multiple CS to binary

conversions that heavily degrades

performance due to time-consuming carry

propagations. In this brief, we propose a

high-performance architectural scheme for

the synthesis of flexible hardware DSP

accelerators by combining optimization

techniques from both the architecture and

arithmetic levels of abstraction. We

introduce a flexible datapath architecture

that exploits CS optimized templates of

chained operations. The proposed

architecture comprises flexible

computational units (FCUs), which enable

the execution of a large set of operation

templates found in DSP kernels. The

proposed accelerator architecture delivers

average gains of up to 61.91% in area-delay

product and 54.43% in energy consumption

compared to state-of-art flexible datapaths

sustaining efficiency toward scaled

technologies.

II.CARRY-SAVE

ARITHMETIC:MOTIVATIONAL

OBSERVATIONS AND LIMITATIONS

CS representation has been widely used to

design fast arithmetic circuits due to its

inherent advantage of eliminating the large

carry-propagation chains. CS arithmetic

optimizations rearrange the application’s

DFG and reveal multiple input additive

operations (i.e., chained additions in the

initial DFG), which can be mapped onto CS

compressors. The goal is to maximize the

range that a CS computation is performed

within the DFG. However, whenever a

multiplication node is interleaved in the

DFG, either a CS to binary conversion is

invoked or the DFG is transformed using the

distributive property Thus, the

aforementioned CS optimization approaches

have limited impact on DFGs dominated by

multiplications, e.g., filtering DSP

applications. In this brief, we tackle the

aforementioned limitation by exploiting the

CS to modified Booth (MB) recoding each

time a multiplication needs to be performed

within a CS-optimized datapath. Thus, the

1063-8210 © 2015 IEEE. Personal use is

permitted, but republication/redistribution

requires IEEE permission. See

http://www.ieee.org/publications_standards/

publications/rights/index.html for more

information.

 4

Fig. 1. Abstract form of the flexible

datapath.

Fig. 2. FCU.

computations throughout the multiplications

are processed using CS arithmetic and the

operations in the targeted datapath are

carried out without using any intermediate

carry-propagate adder for CS tobinary

conversion, thus improving performance.

III.PROPOSEDFLEXIBLE

ACCELERATOR

 The proposed flexible accelerator

architecture is shown in Fig. 1. Each FCU

operates directly on CS operands and

produces data in the same form 1 for direct

reuse of intermediate results. Each FCU

operates on 16-bit operands. Such a bit-

length is adequate for the most DSP

datapaths [16], but the architectural concept

of the FCU can be straightforwardly adapted

for smaller or larger bit-lengths. The number

of FCUs is determined at design time based

on the ILP and area constraints imposed by

the designer. The CStoBin module is a

ripple-carry adder and converts the CS form

to the two’s complement one. The register

bank consists of scratch registers and is used

for storing intermediate results and sharing

operands among the FCUs. Different DSP

kernels (i.e., different register allocation and

data communication patterns per kernel) can

be mapped onto the proposed architecture

using post-RTL datapath interconnection

sharing techniques [9], [17], [18]. The

control unit drives the overall architecture

(i.e., communication between the data port

and the register bank, configuration words of

the FCUs and selection signals for the

multiplexers) in each clock cycle.

A. Structure of the Proposed Flexible

Computational Unit The structure of the

FCU (Fig. 2) has been designed to enable

high-performance flexible operation

chaining based on a library of operation

 5

templates [4], [7]. Each FCU can be

configured to any of the T1–T5 operation

templates shown in Fig. 3. The proposed

FCU enables intratemplate operation

chaining by fusing the additions

1The FCU is able to operate on either CS or

two’s complement formatted operands, since

a CS operand comprises two 2’s

complement binary numbers.

Fig. 3. FCU template library

performed before/after the

multiplication and performs any partial

operation template of the following complex

operations: W∗ = A×(X∗+Y∗)+K∗ (1) W∗ =

A×K∗+(X∗+Y∗). (2) The following relation

holds for all CS data: X∗ ={XC, XS}=X C +

XS. The operand A is a two’s complement

number. The alternative execution paths in

each FCU are specified after properly setting

the control signals of the multiplexers

MUX1 and MUX2 (Fig. 2). The multiplexer

MUX0 outputs Y∗ when CL0 = 0 (i.e., X∗ +

Y∗ is carried out) or Y∗ when X∗ − Y∗ is

required and CL0 = 1. The two’s

complement 4:2 CS adder produces the N∗

= X∗+Y∗ when the input carry equals 0 or

the N∗ = X∗−Y∗ when the input carry

equals 1. The MUX1 determines if N∗ (1) or

K∗ (2) is multiplied with A. The MUX 2

specifies if K∗ (1) or N∗ (2) is added with

the multiplication product. The multiplexer

MUX3 accepts the output of MUX2 and its

1’s complement and outputs the former one

when an addition with the multiplication

product is required (i.e., CL3 =0) or the later

one when a subtraction is carried out (i.e.,

CL3 =1). The 1-bit ace for the subtraction is

added in the CS adder tree. The multiplier

comprises a CS-to-MB module, which

adopts a recently proposed technique [19] to

recode the 17-bit P∗ in its respective MB

digits withminimal carrypropagation. The

multiplier’s product consists of 17 bits. The

multiplier includes a compensation method

for reducing the error imposed at the

product’s accuracy by the truncation

technique [20]. However, since all the FCU

inputs consist of 16 bits and provided that

there are no overflows, the 16 most

significant bits of the 17-bit W∗ (i.e., the

output of the Carry-Save Adder (CSA) tree,

and thus, of the FCU) are inserted in the

appropriate FCU when requested.

 6

B. DFG Mapping Onto the Proposed FCU-

Based Architecture In order to efficiently

map DSP kernels onto the proposed FCU-

based accelerator, the semiautomatic

synthesis methodology presented in [7] has

been adapted. At first, a CS-aware

transformation is performed onto the

original DFG, merging nodes of multiple

chained additions/subtractions to 4:2

compressors. A pattern generation on the

transformed DFG clusters the CS nodes with

the multiplication operations to form FCU

template operations (Fig. 3). The designer

selects the FCU operations covering the

DFG for minimized latency. Given that the

number of FCUs is fixed, a resource-

constrained scheduling is considered with

the available FCUs and CStoBin modules

determining the resource constraint set. The

clustered DFG is scheduled, so that each

FCU operation is assigned to a specific

control step. A list-based scheduler [21] has

been adopted considering the mobility2 of

FCU operations. The FCU operations are

scheduled according to descending mobility.

The scheduled FCU operations are bound

onto FCU instances and proper

configuration bits are generated. After

completing register allocation, a FSM is

generated in order to implement the control

unit of the overall architecture.

2Mobility: The ALAP-ASAP difference of

the FCU operations.

This article has been accepted for inclusion

in a future issue of this journal. Content is

final as presented, with the exception of

pagination.

Fig. 4. Typical chaining of addition–

multiplication–addition operations reflecting

T1 template of Fig. 3. Its design is based on

(a) two’s complement arithmetic, (b) CS

optimizations of [12], (c) CS optimizations

with multiplication distribution [14], and (d)

incorporating the CS-to-MB recoding

concept. (e) Positioning of the proposed

approach with respect to the two’s

complement one and the CS optimizations

based on

IV. THEORETICALANALYSIS

In this section, we provide a theoretical

analysis of the proposed approach based on

 7

the unit gate model3 .The critical template

of the proposed FCU is the T1 of Fig. 3 and

reflects an addition–multiplication–

additionoperationchaining(AMADFG). Fig.

4(a) shows the AMADFG when all operands

are in two’s complement form. Fig. 4(b)

shows how [12] optimizes the AMADFG.

Fig. 4(c) illustrates how [14] distributes the

multiplication operation over the CS

formatted data. The proposed approach in

Fig. 4(d) incorporates the CS-to-MB

recoding unit. We assume 16-bit input

operands for all the designs and, without

loss of generality, we do not consider any

truncation concept during the

multiplications. Fig. 4(e) shows the area-

delay tradeoffs of all the alternative designs.

As shown, the proposed design solution is

the most effective among all the design

alternatives.

V. EXPERIMENTALEVALUATION

A. Circuit-Level Exploration of the

Proposed FCU With Respect to Technology

Scaling A circuit-level comparative study

was conducted among the proposed FCU,

the flexible computational component (FCC)

of] and the reconfigurable arithmetic unit

(RAU)4 of [7] in scaled technology nodes.

The CS representation requires twice the

number of bits of the respective two’s

complement form, thus, increasing wiring

and affecting performance in scaled

technologies. This experimentation targets

to show that the scaling impact on the

performance does not eliminate the benefits

of using CS arithmetic. The three units

considered were described in RTL using

Verilog. The CSA tree of the proposed FCU

and the adders and multipliers of the FCC

were imported from the Synopsys

DesignWare library [11]. We used Synopsys

Design Compiler [11] to synthesize the

examined units and the TSMC 130, 90, and

65 nm standard cell libraries.5 We

synthesized each unit with the highest

optimization degree at its critical clock

period and 20 higher ones witha step

interval of 0.10 ns. Fig. 5 reports the area

complexity of the evaluated units at 130, 90,

and 65 nm of synthesis technology. At 130

nm, the proposed FCU,3The two-input gates

NAND, AND, NOR,andORcount as one

gate equivalent for area (Ag) and delay (Tg).

The two-input XOR, XNOR gates count as

two Ag and two Tg. The Full Adder (FA)

and Half Adder (HA) area is seven and three

Ag, respectively, while their critical delays

are four and two Tg. 4In this section, we

consider one flexible pipeline stage (FPS) of

 8

the RAU. 5The factor of technology scaling

is ∼0.7 as the technology shrinks from 130

to 90 nm and from 90 to 65 nm.

.

the FCC, and the RAU operate without

timing violations starting at 2.98, 4.83, and

1.99 ns, respectively. At 90 nm, the

proposed FCU, the FCC, and the RAU are

timing functional starting at 1.66, 2.46, and

1.01 ns, respectively. In addition, at 65 nm,

the proposed FCU, the FCC, and the RAU

start operating without timing violations at

1.13, 1.68, and 0.67 ns, respectively. As the

synthesis technology is scaled down, Fig. 5

shows that the proposed FCU outperforms

the FCC in terms of critical delay and area

complexity, but presents larger values for

these metrics than the RAU in all the

technology nodes. However, RAU’s flexible

pipeline stage (FPS) [7] features limited

ability in carrying out heavy arithmetic

operations as shown from the mega

operations per second/watt (MOPS/W)6

evaluation in Fig. 6. Fig. 6 shows the

MOPS/W values for the proposed FCU, the

FCC, and the RAU at their critical clock

periods with respect to the synthesis

technology. For each unit, we consider the

templates

6Mega Operations per Second/Watt: MOPS

is defined as the number of operations

multiplied by the clock frequency divided by

the operation latency (=number of cycles),

i.e., MOPS =((#Ops)/(#Cycles))×ClkFreq.

with the largest number of active operations

without overlapping the one another and

calculate the average ((#Ops)/(#Cycles))

factor. The #Ops derives from the two’s

complement arithmetic operations (additive

or multiplicative). For CS-aware units, i.e.,

FCU and RAU, the CStoBin module runs in

parallel with the FCU or RAU, thus

counting as one additive operation. In

particular, for the proposed FCU, we

consider the templates T1 (or T2) with six

operations (e.g., five operations from T1 and

one operation from CStoBin) in one cycle

 9

and T3 with five operations in one cycle.

Thus, ((#Ops)/(#Cycles))FCU = 11/2. For

the FCC, we consider only the full load case

of four operations in one cycle resulting in

((#Ops)/(#Cycles))FCC = 4. In addition, for

the RAU, we consider the template of five

additive operations that are carried out in

one cycle, and the template of one

multiplication that needs four cycles. Thus,

((#Ops)/(#Cycles))RAU =21/8. The clock

frequency ClkFreq is the highest one that

each unit achieves (i.e., the critical clock

period). The power values for computing the

MOPS/W ones have been extracted by

simulating each unit with Modelsim [23] for

216 random inputs and using the Synopsys

PrimeTime-PX [11] with the average

calculation mode triggered. As shown, the

proposed FCU delivers average MOPS/W

gains across technology nodes of 6× and 2×

over FCC and RAU, respectively. Thus, as

the synthesis technology is scaled down, the

benefits of the proposed FCU remain.

B. Mapping of DSP Kernels Onto the

Proposed FCU-Based Architecture We

examined the efficiency of the proposed

solution by mapping and accelerating DSP

kernels onto the FCU datapath, that is: 1) a

sixth-order ELLIPTIC filter [24]; 2) a 16-

taps Finite Impulse Response filter (FIR16);

3) a nonlinear IIR VOLTERRA filter; 4) an

1-D unrolled Discrete Cosine Transform

(DCT) kernel (UDCT); 5) the 2-D JPEG

DCT (JPEGDCT) [25]; and 6) the 2-D

Inverse MPEG DCT (MPEG_IDCT) [25].

The kernels were scheduled and mapped

onto the architectures based on the proposed

FCU, the FCC [4], and the RAU [7]. The

proposed architecture comprises four FCUs

and one CStoBin module, the FCC-based

one contains two FCCs (=8 ALUs+8

Multipliers) [4], and the RAU-based

architecture consists of four FPSs and one

CStoBin module [7]. For each kernel

mapped, the maximum memory bandwidth

has been allocated between the local storage

and the processing elements. All the

datapaths were synthesized at 65 nm. The

clock periods were specified at 1.60, 2.20,

and 1.20 ns for the proposed FCU-, the

FCC-, and the RAU-based architectures,

respectively, considering the critical delays

of Section V-A plus a slack of 0.50 ns for

absorbing any delays inserted by the

multiplexers and control units. Energy

consumption values were calculated through

PrimeTime-PX after simulating each

datapath with Modelsim. reports the

execution latency, area complexity, and

 10

energy values of the DSP kernels mapped

onto the examined architectures. The

execution latency is the total number of

cycles multiplied by the clock period for the

synthesis of each architecture. The average

latency gains of the proposed FCU-based

architecture over the ones built on the FCC

and the RAU are 33.36% and 56.69%,

respectively. Regarding the area complexity,

the proposed FCU-based flexible datapath

delivers average gains of 31.75% and

13.23% over the FCC- and RAU-based

solutions, respectively. As shown, different

kernels demand different area resources due

to the differing needs regarding the number

of scratch registers and multiplexers, as well

as the complexity of the control unit (i.e.,

the more cycles a mapped kernel needs for

execution, the more complex the control

unit). Table I also reports the metrics of the

area-delay product and the energy providing

a clear view of the beneficial characteristics

of the proposed approach and allowing us to

safely conclude that the proposed

architecture forms a very efficient solution

for DSP acceleration. Table II shows the

theoretically estimated values for the

execution latency and area complexity of the

DSP kernels mapped onto the examined

architectures. The analysis is based on the

unit gate model as in Section IV. Regarding

both the execution latency and the area

complexity and considering all the DSP

kernels, the proposed FCU-based

architecture outperforms the ones built on

the FCC and the RAU. As expected, the

timing constraints and the effects of cell

sizing implied by the Design Compiler

synthesis tool, in some cases result in

inconsistencies between the experimental

and the theoretical studies, e.g., in Table I,

the latency of ELLIPTIC kernel on FCC is

more efficient than the one on RAU, but in

Table II, the RAU-based ELLIPTIC kernel

outperforms the one based on the FCC. In

any case, both the experimental and

theoretical analysis indicated that the

proposed approach forms the most efficient

architectural solution.

VI. CONCLUSION

 In this brief, we introduced a flexible

accelerator architecture that exploits the

incorporation of CS arithmetic optimizations

to enable fast chaining of additive and

multiplicative operations. The proposed

flexible accelerator architecture is able to

operate on both conventional two’s

complement and CS-formatted data

operands, thus enabling high degrees of

 11

computational density to be achieved.

Theoretical and experimental analyses have

shown that the proposed solution forms an

efficient design tradeoff point delivering

optimized latency/area and energy

implementations.

REFERENCES

 [1] P. Ienne and R. Leupers, Customizable

Embedded Processors: Design Technologies

and Applications. San Francisco, CA, USA:

Morgan Kaufmann, 2007. [2] P. M.

Heysters, G. J. M. Smit, and E. Molenkamp,

“A flexible and energy-efficient coarse-

grained reconfigurable architecture for

mobile systems,” J. Supercomput., vol. 26,

no. 3, pp. 283–308, 2003.

[3] B. Mei, S. Vernalde, D. Verkest, H. D.

Man, and R. Lauwereins, “ADRES: An

architecture with tightly coupled VLIW

processor and coarse-grained reconfigurable

matrix,” in Proc. 13th Int. Conf. Field

Program. Logic Appl., vol. 2778. 2003, pp.

61–70.

[4] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis, “A high-

performance data path for synthesizing DSP

kernels,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 25, no. 6,

pp. 1154–1162, Jun. 2006.

 [5] K. Compton and S. Hauck, “Automatic

design of reconfigurable domainspecific

flexible cores,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 16, no. 5, pp.

493–503, May 2008.

 [6] S. Xydis, G. Economakos, and K.

Pekmestzi, “Designing coarse-grain

reconfigurable architectures by inlining

flexibility into custom arithmetic data-

paths,” Integr., VLSI J., vol. 42, no. 4, pp.

486–503, Sep. 2009.

 [7] S. Xydis, G. Economakos, D. Soudris,

and K. Pekmestzi, “High performance and

area efficient flexible DSP datapath

synthesis,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 19, no. 3, pp. 429–

442, Mar. 2011.

 [8] G. Ansaloni, P. Bonzini, and L. Pozzi,

“EGRA: A coarse grained reconfigurable

architectural template,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 19,

no. 6, pp. 1062–1074, Jun. 2011.

 [9] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, “Selective flexibility:

Creating domain-specific reconfigurable

 12

arrays,” IEEE Trans.

Comput.-Aided Design Integr.

Circuits Syst., vol. 32, no. 5,

pp. 681–694, May 2013.

[10] R. Kastner, A. Kaplan, S. O. Memik,

and E. Bozorgzadeh, “Instruction generation

for hybrid reconfigurable systems,” ACM

Trans. Design Autom. Electron. Syst., vol.

7, no. 4, pp. 605–627, Oct. 2002.

[11] [Online]. Available:

http://www.synopsys.com, accessed 2013.

[12] T. Kim and J. Um, “A practical

approach to the synthesis of arithmetic

circuits using carry-save-adders,” IEEE

Trans. Comput.Aided Design Integr.

Circuits Syst., vol. 19, no. 5, pp. 615–624,

May 2000.

 [13] A. Hosangadi, F. Fallah, and R.

Kastner, “Optimizing high speed arithmetic

circuits using three-term extraction,” in

Proc. Design, Autom. Test Eur. (DATE),

vol. 1. Mar. 2006, pp. 1–6

AUTHOR’S BIO DATA

Y.SREELATHA received her

B.Tech degree from Modugula

Kalavathamma Institute of

Technology For Women

(affliated by JNTU Ananthapuram)

Department of ECE. She is pursuing M.Tech

in Modugula Kalavathamma Institute of

Technology For Women, Rajampet,Kadapa,

A.

Miss.L.PRABHAVATHI is currently

working as an associate professor in

Modugula Kalavathamma Institute of

Technology For Women in ECE

Department. She recived her M.tech from

Siddharth Institution Engineering And

Technology(2011).

